a и a>0, то для существования корня z>0 необходимо и достаточно: $z_{\rm верш}>0$ и существуют корни. Имеем:

$$\begin{cases} \frac{40t - 5a}{160} > 0, \\ \left(5a - 40t\right)^2 - 320a \ge 0, \\ 0 < t \le \min\left(1; \frac{5a}{8}\right); \end{cases} \begin{cases} t > \frac{a}{8}, \\ 40t - 5a \ge \sqrt{320a}, \\ t \le \min\left(1; \frac{5a}{8}\right). \end{cases}$$
$$40t - 5a \ge \sqrt{320a} \Leftrightarrow t \ge \frac{a}{8} + \sqrt{\frac{a}{5}} \ (> \frac{a}{8}, \text{ так как } a > 0).$$

Система принимает вид

$$\begin{cases} t \ge \frac{a}{8} + \sqrt{\frac{a}{5}}, \\ t \le 1, \\ t \le \frac{5a}{8}. \end{cases}$$

Чтобы эта система имела решение, необходимо и достаточно

$$\begin{cases} \frac{a}{8} + \sqrt{\frac{a}{5}} \le 1, \\ \frac{a}{8} + \sqrt{\frac{a}{5}} \le \frac{5a}{8}. \end{cases}$$

Пусть $\sqrt{\frac{a}{5}}=q\geq 0$. Тогда $\frac{a}{8}=\frac{5q^2}{8}$. Первое неравенство примет вид $\frac{5q^2}{8}+q-1\leq 0$, $5q^2+8q-8\leq 0$, $q_{1,2}=\frac{4\pm2\sqrt{14}}{5}$. Тогда $\sqrt{\frac{a}{5}}\leq \frac{2\sqrt{14}-4}{5}$, $\frac{a}{5}\leq \frac{72-16\sqrt{14}}{25}$, $0< a\leq \frac{72-16\sqrt{14}}{5}$. Второе неравенство дает: $\sqrt{\frac{a}{5}}\leq \frac{a}{2} \Leftrightarrow \frac{4}{5}\leq a$.

6. 1 : 2, считая от вершины S.

Пусть H — точка пересечения диагоналей AC и BD в прямоугольнике ABCD. Пусть данная в условии плоскость T пересекает SB в точке P, SD в точке Q, SC в точке L, SH в точке M. Так как $BD \parallel T$, то $PQ \parallel BD$ и $M \in PQ$, $M \in AL$. Пусть искомое
отношение $\dfrac{SL}{LC} = y$. Пусть $LK \parallel MH$ и $K \in AC$. Тогда из
подобия: $\dfrac{HK}{KC} = y$, $\dfrac{AH}{HK} = \dfrac{y+1}{y}$, $\dfrac{LK}{SH} = \dfrac{1}{y+1}$, $\dfrac{MH}{LK} = \dfrac{1}{y+1}$

$$=\frac{AH}{AK}=\frac{y+1}{2y+1}\,,\qquad \frac{MH}{SH}=\frac{MH}{LK}\cdot\frac{LK}{SH}=\frac{y+1}{2y+1}\cdot\frac{1}{y+1}=\frac{1}{2y+1}\,,$$

$$\frac{PQ}{BD}=\frac{SM}{SH}=\frac{2y}{2y+1}\,.$$
 Тогда
$$\frac{V_{ASPQ}}{V_{ASBD}}=\frac{S_{SPQ}}{S_{SBD}}=\left(\frac{PQ}{BD}\right)^2=\left(\frac{2y}{2y+1}\right)^2.$$
 Высота пирамиды $SAPQ$, опущенная из точки S , равна радиусу R данного в задаче шара. Поэтому
$$\frac{V_{ASPQ}}{V_{ASBD}}=\frac{S_{APQ}\cdot R}{S_{ABD}\cdot SH}\,.$$
 Получаем
$$\frac{S_{APQ}\cdot R}{S_{ABD}\cdot SH}=\left(\frac{2y}{2y+1}\right)^2.$$
 Проведем через A плоскость, перпендикулярную BD . Пусть она пересекает BD в точке V , а PQ в точке V . Тогда $AV\perp BD$, $AU\perp PQ$, $UV\perp BD$, $UV\parallel SH$, $UV=MH$. Имеем $2S_{ABD}=AB\cdot AD=AV\cdot BD$. Пусть $AB=a$, $AD=b$, тогда $BD=\sqrt{a^2+b^2}$ и $AV=\frac{ab}{\sqrt{a^2+b^2}}$. Пусть $SH=h$. Тогда

$$UV = MH = \frac{h}{2y+1},$$

$$AU = \sqrt{AV^2 + UV^2} = \sqrt{\frac{a^2b^2}{a^2 + b^2} + \left(\frac{h}{2y+1}\right)^2}.$$

Имеем

$$\frac{S_{APQ}}{S_{ABD}} = \frac{PQ \cdot AU}{BD \cdot AV} = \frac{2y}{2y+1} \sqrt{1 + \frac{a^2 + b^2}{a^2b^2} \cdot \left(\frac{h}{2y+1}\right)^2} \ .$$

Получаем уравнение

$$\frac{2y}{2y+1}\sqrt{1+\frac{a^2+b^2}{a^2b^2}\cdot\left(\frac{h}{2y+1}\right)^2}\cdot\frac{R}{h} = \left(\frac{2y}{2y+1}\right)^2.$$

Сокращая на $\frac{2y}{2y+1}$, затем домножая на 2y+1 и возводя в квадрат, приходим к уравнению

$$y^2 \left(\frac{4h^2}{R^2} - 4 \right) - 4y - \left(\frac{a^2 + b^2}{a^2 b^2} \cdot h^2 + 1 \right) = 0 \ .$$

Подставляя $a=2,\ b=3,\ h=\frac{12}{\sqrt{23}}$, R=1, получаем $484y^2-92y-75=0$. Положительный корень этого уравнения равен $\frac{1}{2}$.

Вариант 3

1. 5.

Положим $2^x = y > 0$. Получим $-y^2 + 32y - 150 = 150$ или $-y^2 + 32y - 150 = -150$, т.е. $-y^2 - 32y + 300 = 0$ или $-y^2 - 32y = 0$. В первом уравнении дискриминант D < 0, из второго y = 0 (не подходит) либо y = 32 и x = 5.

2.
$$\begin{cases} x = -6, \\ y = -1 \end{cases} \text{ или } \begin{cases} x = \frac{-7 + 3\sqrt{5}}{2}, \\ y = \frac{-7 + 3\sqrt{5}}{2}. \end{cases}$$

Из первого уравнения вытекают случаи:

1) y = -1. Тогда второе уравнение примет вид $\sqrt{x^2 + 6x + 9} = x + 9$. Оно равносильно системе

$$\begin{cases} x + 9 \ge 0, \\ x^2 + 6x + 9 = (x + 9)^2. \end{cases}$$

Второе уравнение дает 12x + 72 = 0 и x = -6. Это решение удовлетворяет и первому неравенству.

2) y=x. Тогда второе уравнение примет вид $\sqrt{x^2+7x+10}=-x^2-7x+2$. Положим $\sqrt{x^2+7x+10}=t\geq 0$. Тогда $-x^2-7x+2=-t^2+12$. Получаем $t=-t^2+12$, или $t^2+t-12=0$, его корни -4 и 3. Так как $t\geq 0$, то t=3, т.е. $\sqrt{x^2+7x+10}=3$. Отсюда $x^2+7x+10=9$, $x^2+7x+1=0$. Получаем 2 корня: $x=\frac{-7\pm\sqrt{45}}{2}$. При этом y=x, и надо учесть ОДЗ: $y\geq -1$. Поэтому подходит только

$$y = x = \frac{-7 + \sqrt{45}}{2} = \frac{-7 + 3\sqrt{5}}{2}$$
.

- **3.** a) $arctg 4 + \pi n$, $n \in \mathbb{Z}$;
- 6) $S = 120 \arctan 4 + 7140\pi$ и S < 23040.
- а) ОДЗ: $\sin x \neq 0$, $\cos x \neq 0$, $\cos 2x \neq 0$, $\cos 4x \neq 0$, $tg x + 7 tg 4x \neq 0$. При умножении знаменателя второй дроби на ctg x получается выражение в скобке в числителе. Поэтому

вторая дробь равна 32 ctg x. Имеем

$$\frac{\left(\sin x + \cos x\right)^2}{\cos 2x} = \frac{\left(\sin x + \cos x\right)^2}{\left(\cos x - \sin x\right)\left(\cos x + \sin x\right)} =$$

$$= \frac{\sin x + \cos x}{\cos x - \sin x} = \frac{\operatorname{tg} x + 1}{1 - \operatorname{tg} x}$$

(последний переход получен делением числителя и знаменателя на $\cos x \neq 0$). Уравнение принимает вид: $\frac{9(\lg x+1)}{1-\lg x} + \frac{32}{\lg x} + 7 = 0$. Заменяя $\lg x$ на g, получаем: $\frac{9(g+1)}{1-g} + \frac{32}{g} + 7 = 0$. Освобождаясь от знаменателей, получим $2g^2 - 16g + 32 = 0$ и $g^2 - 8g + 16 = 0$. (Если изначально все переводится в $\sin x \cos x + 16\cos^2 x = 0$ и после деления на $\cos^2 x$ придем к тому же уравнению.) Отсюда $\lg x = g = 4$.

на $\cos^2 x$ придем к тому же уравнению.) Отсюда $\lg x = y = 4$. Из равенства $\frac{1}{\cos^2 x} = 1 + \lg^2 x$ получаем, что $\cos^2 x = \frac{1}{17}$. Применяя дважды формулу $\cos 2x = 2\cos^2 x - 1$, вычисляем $\cos 2x$ и $\cos 4x$; также, применяя дважды формулу $\lg 2x = \frac{2\lg x}{1 - \lg^2 x}$, вычисляем $\lg 2x$ и $\lg 4x$. Все условия из ОДЗ выполняются, т.е.

 $x=\arctan 4+\pi n$, $n\in\mathbb{Z}$. 6) $x=\arctan 4+\pi n\in[0;120\pi]$ при $n=0,1,\ldots,119$. Используя формулу для суммы членов арифметической прогрессии, получаем, что сумма всех корней данного уравнения, принадлежащих отрезку $[0;120\pi]$, равна

$$S = 120 \arctan 4 + \pi \frac{(0+119) \cdot 120}{2} = 120 \arctan 4 + 7140\pi.$$

Так как

$${
m arctg}\ 4 \le \frac{\pi}{2}\ , \ {
m To}\ \ S \le 60\pi + 7140\pi = 7200\pi < 7200 \cdot 3, 2 = 23040\ .$$

4. Тангенсы углов:
$$2\sqrt{6}$$
 , $2\sqrt{6}$, $-2\sqrt{6}$, $-2\sqrt{6}$, $R = \frac{35}{\sqrt{6}}$.

Пусть заданное отношение площадей m:n и m < n. Пусть $\frac{S_{ABC}}{S_{ADC}} = m:n$ и $\frac{S_{BCD}}{S_{ABD}} = m:n$ (остальные случаи симметричны). Пусть диагонали пересекаются в точке K. Из отношения площадей треугольников ABC и ADC с общей стороной AC вытекает, что высоты, опущенные из B и D на AC, относятся как m:n. Прямоугольные треугольники, сторонами которых явля-

ются эти высоты и отрезки BK и DK, подобны (по 2 углам). Поэтому также BK : KD = m : n. Аналогично получаем CK : AK = m : n, т.е. BK : KD = CK : AK. Кроме того, углы BKC и AKD равны (как вертикальные). Следовательно, треугольники AKD и CKB подобны. При этом равны углы DAK и BCK, поэтому $AD \parallel BC$, т.е. ABCD – трапеция. Из подобия треугольников AKD и CKB вытекает, что BC:AD=m:n и AD > BC. Пусть AD = nx, BC = mx. Так как трапеция вписана в окружность, то она равнобокая (так как $\cup AB = \cup CD$). Поскольку она описана около окружности, то AB + CD = AD + BC. Отсюда $AB = CD = \frac{m+n}{2}x$, и AD — наибольшая сторона. Опустим перпендикуляр BH на AD. Тогда AH = $= \frac{AD - BC}{2} = \frac{n - m}{2}x . \quad \text{Значит}, \quad BH^2 = AB^2 - AH^2 = mnx^2 \,,$ $BH = x\sqrt{mn}$. Тогда тангенсы двух углов четурехугольника равны $\frac{BH}{AH} = \frac{2\sqrt{mn}}{n-m}$, а два равны $-\frac{2\sqrt{mn}}{n-m}$. Подставляя $m=2,\ n=1$ = 3, получаем первый ответ. Далее имеем: HD = AD - AH = $=\frac{m+n}{2}x$ и $BD^2=HD^2+BH^2=\frac{m^2+6mn+n^2}{4}x^2$. Так как $\sin BAD = \frac{BH}{AB} = \frac{2\sqrt{mn}}{m+n}$, то по теореме синусов из треугольника ABD для радиуса описанной окружности R получаем: $R = \frac{BD}{2 \sin RAD} = \sqrt{\frac{m^2 + 6mn + n^2}{4}} \frac{m + n}{4\sqrt{mn}} x .$ Учитывая, $x = \frac{AD}{n}$, и подставляя значения m = 2, n = 3, AD = 24, получаем второй ответ.

5.
$$\left[\arccos\frac{1}{4}; \frac{\pi}{2}\right] \cup \left[2; \frac{3\pi}{2}\right] \cup \left[-\arccos\frac{1}{4} + 2\pi n; \arccos\frac{1}{4} + 2\pi n; \arccos\frac{1}{4} + 2\pi n\right] \cup \left[\frac{\pi}{2} + 2\pi k; \frac{3\pi}{2} + 2\pi k\right], \quad n, k \in \mathbb{Z}, \quad n \ge 1, \quad k \ge 1.$$

ОДЗ: x > 0. Вынося все показатели степени из логарифмов, используя тождество $\log_a b \cdot \log_b c = \log_a c$ и группируя все слагаемые с логарифмом, приходим к неравенству

$$\log_2 x \left(2\cos x + 8\sin^2 x - 8 \right) \le 2\cos x - 4\cos 2x - 4.$$

Так как $8\sin^2 x = 4 - 4\cos 2x$, то окончательно получим неравен-

ство $(\log_2 x - 1)(2\cos x - 4\cos 2x - 4) \le 0$. Заменяя $\cos 2x = 2\cos^2 x - 1$, получаем неравенство

$$(\log_2 x - 1)\cos x \left(\cos x - \frac{1}{4}\right) \ge 0.$$

Оно сводится к объединению двух систем (учтем ОДЗ: x > 0):

$$\begin{cases} 0 < x \le 2, \\ 0 \le \cos x \le \frac{1}{4}, \end{cases} \begin{cases} x \ge 2, \\ \cos x \le 0 \text{ или } \cos x \ge \frac{1}{4}. \end{cases}$$

Ответ получаем на тригонометрическом круге.

6.
$$\left(-\infty; \frac{-1-\sqrt{13}}{2}\right) \cup \left(-1; +\infty\right)$$
.

Условие задачи равносильно тому, что хотя бы одно из чисел первой пары меньше обоих чисел из второй пары. Получаем объединение двух систем:

$$\begin{cases} \left(x+1\right)^3 < x^3 + 3x^2 + 2x + 2, \\ \left(x+1\right)^3 < x^2 + 5x + 4 \end{cases} \text{ или } \begin{cases} x^2 - 3x - 2 < x^3 + 3x^2 + 2x + 2, \\ x^2 - 3x - 2 < x^2 + 5x + 4. \end{cases}$$

Преобразуя, получаем:

$$\begin{cases} x < 1, \\ x^3 + 2x^2 - 2x - 3 < 0 \end{cases} \text{ или } \begin{cases} x^3 + 2x^2 + 5x + 4 > 0, \\ 8x > -6. \end{cases}$$

Кубические многочлены раскладываются на множители с учетом того, что есть корень x = -1. Приходим к системам:

$$\begin{cases} x < 1, \\ (x+1) \left(x - \frac{-1 + \sqrt{13}}{2} \right) \left(x - \frac{-1 + \sqrt{13}}{2} \right) < 0 \end{cases}$$
или
$$\begin{cases} (x+1) \left(x^2 + x + 4 \right) > 0, \\ x > -\frac{3}{4}. \end{cases}$$

Решая эти системы методом интервалов, получаем ответ.

Замечание. Неравенства, получающееся из сравнения чисел в паре, не решаются.

Вариант 4

1. -6.

Имеем

$$a^{3} = (\sqrt[3]{2} + \sqrt[3]{4})^{3} = 2 + 3\sqrt[3]{4} \cdot \sqrt[3]{4} + 3\sqrt[3]{2} \cdot \sqrt[3]{16} + 4 =$$

$$= 6 + 3\sqrt[3]{16} + 3\sqrt[3]{32} = 6 + 6\sqrt[3]{2} + 6\sqrt[3]{4}$$

и $6a - a^3 = -6$.

2. 5 ч.

Петров на весь путь потратил 4 часа. Значит, полпути он пробегал за 2 часа. Первую половину пути Иванов бежал вдвое быстрее Петрова, а потому потратил на нее 1 час. Вторую половину пути Иванов бежал вдвое медленнее Петрова, и, значит, потратил на нее 4 часа. Время, затраченное Ивановым на весь пробег, равно 1 + 4 = 5 часов.

Можно, конечно, решать эту задачу, вводя неизвестные и составляя уравнения. Например, можно обозначить буквой vскорость Петрова и буквой S длину пути. Уравнение, связывающее эти величины, имеет вид S = 4v, а искомая величина есть

$$\frac{S/2}{2v} + \frac{S/2}{v/2} = \left(\frac{1}{4} + 1\right)\frac{S}{v} = 5.$$

$$3. -\frac{2\sqrt{2}}{3}, -\frac{4\sqrt{2}}{7}. \text{ Имеем}$$

$$\cos^2 \alpha = 1 - \sin^2 \alpha = \frac{8}{9}.$$

Кроме того, по условию

$$0 > \cos\left(\alpha - \frac{\pi}{3}\right) = \cos\frac{\pi}{3}\cos\alpha + \sin\frac{\pi}{3}\sin\alpha.$$

Из этого неравенства, поскольку $\sin \alpha = \frac{1}{3} > 0$, следует, что

$$\cos \alpha < 0$$
 . Значит, $\cos \alpha = -\sqrt{\frac{8}{9}} = -\frac{2\sqrt{2}}{3}$. Теперь находим

$$tg \, 2\alpha = \frac{\sin 2\alpha}{\cos 2\alpha} = \frac{2\sin \alpha \cos \alpha}{\cos^2 \alpha - \sin^2 \alpha} = \frac{2 \cdot \frac{1}{3} \cdot \frac{-2\sqrt{2}}{3}}{\frac{8}{9} - \frac{1}{9}} = -\frac{4\sqrt{2}}{7}.$$

4. $1 < x \le 3$.

4. $1 < x \le 3$. Пользуясь формулами $4^t = 2^{2t}$, $\log_a b = \frac{\log_c b}{\log_a a}$ при a = 9, c = $=3, b=x^2+4x-5$, находим

$$4^{\log_9\left(x^2+4x-5\right)} = 2^{2\log_9\left(x^2+4x-5\right)} = 2^{\log_3\left(x^2+4x-5\right)}.$$

Поэтому данное неравенство можно переписать в виде

$$2^{\log_3\left(x^2+4x-5\right)} \le 2^{\log_3\left(1+8x-x^2\right)}.$$

Функции 2^t и $\log_3 t$ монотонно возрастают на своих областях определения, поэтому последнее неравенство равносильно неравенству

$$\log_3(x^2 + 4x - 5) \le \log_3(1 + 8x - x^2),$$

а также двойному неравенству

$$0 < x^2 + 4x - 5 \le 1 + 8x - x^2$$

и, следовательно, системе неравенств

$$\begin{cases} x^2 + 4x - 5 > 0, \\ x^2 - 2x - 3 \le 0. \end{cases}$$

Множество решений первого неравенства состоит из двух областей x < -5 и x > 1. Решения второго неравенства составляют промежуток $-1 < x \le 3$. Множество же решений системы неравенств имеет вид

5.
$$\frac{14}{5}$$
.

Треугольники AFD и BFK имеют по паре равных углов и потому подобны. Следовательно, $\frac{AF}{BF} = \frac{AD}{BK}$. Учитывая, что

$$BK=rac{2}{3}BC=rac{4}{9}AD$$
 , заключаем: $rac{AF}{BF}=rac{9}{4}$ и
$$rac{AB}{BF}=rac{AF}{BF}-1=rac{5}{4}\ , \quad BF=rac{4}{5}AB\ .$$

Точно так же, пользуясь подобием треугольников AED и KEC, находим равенства

$$\frac{DE}{CE} = \frac{AD}{KC} = \frac{9}{2} \; , \; \frac{CD}{CE} = \frac{DE}{CE} - 1 = \frac{7}{2} \; , \; CE = \frac{2}{7}CD \; .$$

Теперь, поскольку AB = CD, имеем

$$\frac{BF}{CE} = \frac{\frac{4}{5}AB}{\frac{2}{7}CD} = \frac{14}{5}.$$

6. Наибольшее значение параметра равно $\sqrt[3]{3}$, а наименьшее равно -5.

Первое решение. При любом a функция $\sqrt{x-a}+\sqrt{x^3}+1$ определена на множестве чисел x, для которых выполнено $x\geq a$, $x^3+1\geq 0$, т.е. на множестве чисел, одновременно удовлетворяющих неравенствам

$$x \ge a, x \ge -1. \tag{3}$$

При любом х из этого множества имеем

$$\sqrt{x-a} + \sqrt{x^3 + 1} \ge \sqrt{x^3 + 1}$$
,

и при $\sqrt{a^3+1}>2$, т.е. при $a>\sqrt[3]{3}$, находим $\sqrt{x^3+1}\geq\sqrt{a^3+1}>2$, так что данное уравнение при $a>\sqrt[3]{3}$ решений не имеет.

Для любого x, удовлетворяющего условиям (3), верно неравенство

$$\sqrt{x-a} + \sqrt{x^3 + 1} \ge \sqrt{x-a} ,$$

так что при $\sqrt{-1-a}>2$, т.е. при a<-5, выполняется $\sqrt{x-a}\ge\sqrt{-1-a}>2$. Значит, данное уравнение не имеет решений и при a<-5.

При $a=\sqrt[3]{3}$ данное уравнение имеет корень $\sqrt[3]{3}$, а при a=-5 оно имеет корень -1.

Второе решение. Это решение находит не только искомые наименьшее и наибольшее значения параметра *a*, но и все множество параметров, при которых разрешимо данное уравнение. Но оно использует непрерывность функции, стоящей в левой части уравнения.

Как доказано раньше, при любом a функция $\sqrt{x-a} + \sqrt{x^3+1}$ определена на множестве $x \ge b = \max(a; -1)$. Эта функция есть сумма двух возрастающих функций и потому возрастает. Она непрерывна и принимает сколь угодно большие значения. Поэтому уравнение будет разрешимо в том и только том случае, когда наименьшее значение функции, т.е. f(b), не превосходит 2. Итак, условием разрешимости является выполнение неравенства $f(b) \le 2$. Рассмотрим отдельно два случая.

а) Пусть $a \ge -1$. Тогда b = a, $f(b) = \sqrt{a^3 + 1}$ и условие разрешимости принимает вид

$$\sqrt{a^3+1} \le 2$$
.

Это неравенство на множестве $a \ge -1$ равносильно неравенству $a^3+1\le 4$. Решая последнее неравенство, находим $a^3\le 3$ и $a\le \sqrt[3]{3}$. Искомое множество значений параметра в первом случае имеет вил $-1\le a\le \sqrt[3]{3}$.

6) Пусть a < -1. Тогда b = -1, $f(b) = \sqrt{-1-a}$ и условие разрешимости принимает вид

$$\sqrt{-1-a} \le 2.$$

Это неравенство на множестве a < -1 равносильно неравенству $-1 - a \le 4$. Решая последнее неравенство, находим $a \ge -5$. Искомое множество значений параметра во втором случае имеет вид $-5 \le a \le -1$.

Объединяя найденные множества, находим множество значений параметра a, при которых данное уравнение имеет решение: $-5 \le a \le \sqrt[3]{3}$.

Вступительное испытание (вместо ЕГЭ)

Вариант 1

1.
$$\frac{1}{2552}$$
 2. $-4 \le x < -1$, $x \ge 1$ **3.** 25%. **4.** 2.

- $5. \frac{2\pi}{3}$. Указание. Используйте теорему косинусов.
- **6.** $-\log_3 2 \le x \le 1$.
- 7. 6. Пусть ABCD данный параллелограмм и BC = 3. Точки касания окружности со сторонами BC, AD и центр окружности лежат на одной прямой, перпендикулярной BC. Поэтому высота параллелограмма равна удвоенному радиусу, т.е. 2, а его площадь равна $2 \cdot 3 = 6$.

Иное решение основано на том, что суммы длин противоположных сторон описанного четырехугольника равны. Отсюда следует, что параллелограмм является ромбом, а его площадь равна учетверенной площади треугольника с основанием 3 и высотой 1.

- 8. $\frac{\pi}{2} + \pi n$, $\pm \frac{\pi}{3} + 2\pi n$, $n \in \mathbb{Z}$. Данное уравнение может быть переписано в виде $7\cos^3 x = 2\cos^2 x \left(2-\cos^2 x\right)$, или $\cos^2 x \left(4-7\cos x-2\cos^2 x\right)=0$. Квадратное уравнение $2t^2+7t-4=0$ имеет два корня $t_1=\frac{1}{2}$ и $t_2=-4$. Уравнение $\cos x=-4$ решений не имеет, поэтому данное уравнение равносильно совокупности уравнений $\cos x=0$ и $\cos x=\frac{1}{2}$.
- **9.** $2\sqrt{6}$. Пусть O_1 центр меньшей окружности и A точка ее касания с заданной прямой. Точно так же, O_2 центр большей окружности и B точка ее касания с той же прямой. Согласно условию точки O_1 и O_2 лежат по разные стороны от прямой AB. 150